

Deliverable D2.2

Specifications of Pilot Test 2 / Use Case 2

v1.0

Document Information

Deliverable Title	Specifications of Pilot Test 2 / Use Case 2
Number of the Deliverable	D2.2
WP/Task related	WP2 / WP2.2
Distribution/Confidentiality	PU Public
Date of Delivery	30-06-2017
Status and Version	Final Version 1.0
Number of Pages	16 pages
Person Responsible for Document	Karl Zach – VERBUND
Author(s)	Karl Zach, Rudolf Zauner – VERBUND
Reviewers	Klaus Scheffer – Siemens

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

Revision History

Version	Date	Author / Reviewer	Notes
0.1	28/04/2017	K. Zach, R. Zauner	First draft version
0.2	22/06/2017	K. Scheffer Review of first draft version	
1.0	26/06/2017	K. Zach	Final version incl. alignment of KPI definitions to the wording agreed upon in Deliverable D2.8

Executive Summary

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project.

This document, deliverable D2.2, details the specifications for use case / pilot test 2 - continuous operation 24/7 with maximized hydrogen production to determine potential degradation or power limitations. The aim of this use case is to quantify key performance indicators (KPIs) related to the availability, efficiency and hydrogen production of the electrolyser system during continuous operation of the facility in order to determine the technical abilities and behaviour of the electrolyser system.

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used, which is briefly introduced in chapter 2.

The filled-out use case template for use case / pilot test 2, which contains the general narrative description, KPIs, sequence diagram, etc., can be found in chapter 3.

Table of Contents

Docume	ent Information	2
Revisio	n History	3
Executiv	ve Summary	4
Table of	f Contents	5
1 Int	roduction	6
1.1	The H2FUTURE Project	6
1.2	Scope of the Document	6
1.3	Notations, Abbreviations and Acronyms	7
2 Us	e Case Methodology	8
2.1	Introduction to Use Cases	8
2.2	Use Case Template	8
3 Us	e Case / Pilot Test 2	9
4 Re	ferences	16
4.1	Project Documents of H2FUTURE	16
4.2	External Documents	16

1 Introduction

1.1 The H2FUTURE Project

As part of the H2FUTURE project a 6 MW polymer electrolyte membrane (PEM) electrolysis system will be installed at a steelworks in Linz, Austria. After the pilot plant has been commissioned, the electrolyser is operated for a 26-month demonstration period, which is split into five pilot tests and quasi-commercial operation. The aim of the demonstration is to show that the PEM electrolyser is able to produce green hydrogen from renewable electricity while using timely power price opportunities and to provide grid services (i.e. ancillary services) in order to attract additional revenue.

Subsequently, replicability of the experimental results on a larger scale in EU28 for the steel industry and other hydrogen-intensive industries is studied during the project. Finally, policy and regulatory recommendations are made in order to facilitate deployment in the steel and fertilizer industry, with low CO_2 hydrogen streams also being provided by electrolysing units using renewable electricity.

1.2 Scope of the Document

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project. Further on, in order to validate the commercial exploitation of the PEM electrolyser, to analyse the operational impacts and the deployment conditions of the resulting innovations, key performance indicators (KPIs), which are monitored during the demonstration, are also detailed in WP2. For each use case / pilot test specification (D2.1 – D2.5), for the specification of the quasi-commercial operation (D2.6), for the final technical review (D2.7) and for the monitored KPIs separate documents will be created in WP2.

This document, deliverable D2.2, details the specifications for use case / pilot test 2 - continuous operation 24/7 with maximized hydrogen production to determine potential degradation or power limitations. The aim of this use case is to quantify the following KPIs during continuous operation of the facility:

- Reliability and availability of the facility
- Instabilities or power limitations of the facility and of each of its subunits
- (Electric) system efficiency of the facility
- Hydrogen production, etc.

Together with the use case / pilot test 1 – stress tests – this use case 2 determines the technical abilities and behaviour of the electrolyser system. They serve as basis for the following use cases, which are related to business opportunities and commercial operation.

In chapter 2 of this document a brief introduction to the use case methodology and the use case template for WP2 is given. The filled out use case template is then provided in chapter 3.

1.3 Notations, Abbreviations and Acronyms

10	Alternate Current
AC	Alternate Current
DC	Direct Current
EC	European Commission
EU	European Union
HHV	Higher Heating Value
	International Electrotechnical
IEC	Commission
IED	Intelligent Electronic Device
KPI	Key Performance Indicator
	Polymer Electrolyte Membrane /
PEM	Proton Exchange Membrane
WP	Work Package

Table 1: Acronyms list

2 Use Case Methodology

2.1 Introduction to Use Cases

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used.

Use cases were initially developed and used within the scope of software engineering, and their application has been gradually extended to cover business process modelling. This methodology has extensively been used within the power supply industry for smart grid standardisation purposes by international and European standardisation organisations and projects, such as International Electrotechnical Commission (IEC), M/490 Smart Grid Coordination Group, EPRI Electricity Power Research Institute and National Institute of Standards and Technology (NIST).

In general, use cases describe in textual format how several actors interact within a given system to achieve goals, and the associated requirements. IEC 62559-2 defines a use case as "a specification of a set of actions performed by a system which yields an observable result that is of value for one or more actors or other stakeholders of the system". Use cases must capture all of the functional requirements of a given system (business process or function), and part of its non-functional requirements (performance, security, or interoperability for instance), not based on specific technologies, products or solutions.

The targets of actors can be of different levels, i.e. business or functional, and use cases can be of different levels of detail (very high-level or very specific, related to the task the user of a system may perform) accordingly. Business processes and the related requirements can be described in business use cases, while functions or sub-functions supporting the business processes and their associated requirements can be detailed in system use cases.

2.2 Use Case Template

For the H2FUTURE use cases a template based on the IEC 62559-2 (IEC, 2015) and the DISCERN project (OFFIS, 2013) has been used. This structured format for use case descriptions helps to describe, compare and administer use cases in a consistent way.

The use case template contains the following main information, structured in separate sections and tables:

- Administrative information (version management)
- Description of the use case (general narrative description, KPIs, use case conditions, etc.)
- Diagram(s) of the use case (e.g. sequence diagram)
- Technical details (actor description, references, etc.)
- Step-by-step analysis of the use case
- Information exchanged and requirements

The system use case developed within task WP2.2 of the H2FUTURE project is described in the following section of the document.

3 Use Case / Pilot Test 2

1 Description of the use case

1.1 Name of use case

Use case identification			
ID	Area / Domain(s)/ Zone(s) Name of use case		
UC2	Customer Premises / Process, Field,	Continuous Operation 24/7 with maximized	
002	Station, Operation	Hydrogen Production	

1.2 Version management

Version management				
Version No.			Approval status	
0.1	04/04/2017	K. Zach, R. Zauner	First Draft	
0.2	11/04/2017	K. Zach	Second Draft incl. comments from WP2 workshop	
0.3	24/05/2017	K. Zach	Graphic for definition of electrolyser aggregation levels included	
1.0	26/06/2017	K. Zach	Adaption of KPIs	

1.3 Scope and objectives of use case

Scope and objectives of use case		
Scope Continuous operation 24/7 of the electrolyser with maximized hydrogen production to determine potential degradation or power limitations		
Objective(s) Quantify the reliability and availability of the facility and other KPIs electrolyser		
Related business case(s) Base for any related business case		

1.4 Narrative of Use Case

Narrative of use case

Short description

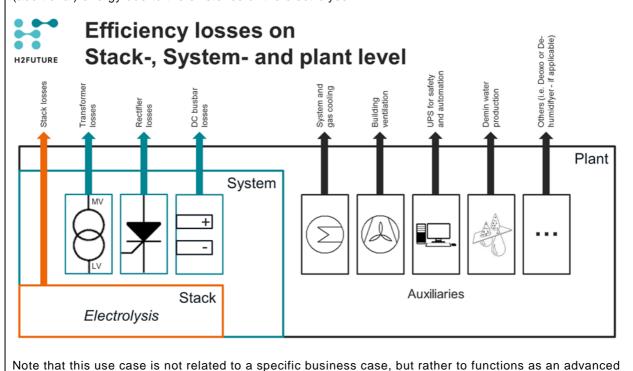
This Use Case describes the continuous operation 24/7 and monitoring of the electrolyser with maximized hydrogen production to determine potential degradation or power limitations.

Complete description

This Use Case describes the continuous operation of the electrolyser for at least one week (24/7) with continuous maximized hydrogen production at nominal production capacity of the electrolyzer. System and performance monitoring ensures that potential degradation of the electrolyser or power limitations of the facility and each of its subunits can be detected and analysed.

In this use case only the SCADA system of the electrolyser, which controls and monitors the electrolyser, and the electrolyser itself are directly involved. Additional Intelligent Electronic Devices (IED) could be used to determine additional technical parameters of the facility and its subunits.

The Key Performance Indicators (KPIs)/parameters determined are specified in section 1.5 below. For the calculation of these KPIs and the following description of the use case the term "electrolyser" or "system" comprises the following subunits:


- Electrolyser stack (SILYZER 300),
- Transformer / rectifier and

For some KPIs also the energy consumption of auxiliary systems is included, these are:

- Water pumps
- Demineralized water refinement
- Uninterruptable power supply
- Building ventilation
- Lighting

The electrolyser system and these auxiliary systems together form the "electrolyser plant". So, in total there are three different levels of aggregation, which are (i) stack level, (ii) system level and (iii) plant level. The definition of these levels is shown in the graphic below. The electrolyser plant level includes any and all components which are directly or indirectly connected to the electrolyser and which consume (additional) energy due to the existence of the electrolyser.

test for the systems overall performance.

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1	Time-based availability of the electrolysis plant	Availability of the electrolyser plant in the considered operating period relative to the planned operating time, excluding the duration of planned maintenance = $(t_{OT_planned} - t_{D_plant}) / t_{OT_planned} *100 [\%],$ with $t_{OT_planned}$ is the planned operating time and t_{D_plant} is the unplanned downtime of the electrolyser plant in the operating period due to any failure of the stacks, power conversion or auxiliaries systems	
2	Time-based availability of the stack modules	Availability of the stacks in the considered operating period relative to the planned operating time excluding the duration of planned maintenance = $(t_{OT_planned} - t_{D_stack}) / t_{OT_planned} * 100 [%]$ with t_{D_stack} is the downtime due to failure of a stack module, and $t_{OT_planned}$ is the planned operating time in the considered operating period	
3	Time-based availability of the system	Availability of the electrolyser system in the considered operating period relative to the planned operating time, excluding the duration of planned maintenance = $(t_{OT_planned} - t_D) / t_{OT_planned} * 100 [\%]$ with t_{D_system} is the unplanned downtime due to any failure of the electrolyser system, and $t_{OT_planned}$ is the planned operating time in	

v1.0

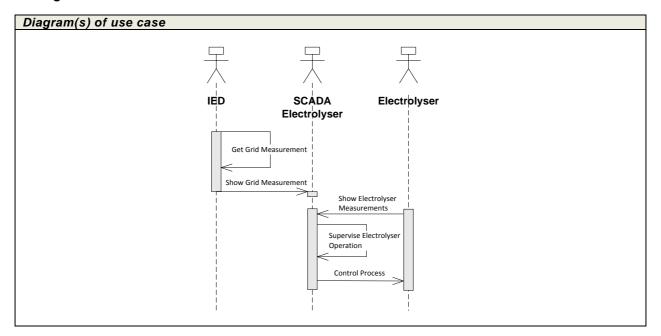
		the considered operating period	
4	Production-based availability	Availability based on the lost H ₂ production = $(m_{planned} - m_{actual}) / m_{planned} * 100 [%]$ $m_{actual} actual hydrogen production in thetesting period [kg]m_{planned} planned hydrogen production inthe testing period [kg]$	
5	Specific system electrical input	The specific system electrical input equals the hydrogen specific energy content in HHV (e.g. 39.4 kWh/kg at 25°C) divided by the electrolyser system efficiency	
6	System electrical efficiency with maximised hydrogen production	The efficiency on system level, at nominal load operation, of the use of AC electric energy to split liquid water into gaseous hydrogen and oxygen relative to the HHV hydrogen energy content (e.g. 39.4 kWh/kg at 25°C). The efficiency is determined using stack efficiency multiplied with the measured efficiency of the AC/DC conversion including losses on medium voltage transformer.	
7	Specific stack electrical input	The specific stack electrical input equals the hydrogen specific energy content in HHV (e.g. 39.4 kWh/kg at 25°C) divided by the stack efficiency at nominal hydrogen production.	
8	Stack electrical efficiency with maximised hydrogen production	The efficiency on stack level, at nominal load operation, of the use of DC electric energy to split liquid water into gaseous hydrogen and oxygen relative to the HHV hydrogen energy content (e.g. 39.4 kWh/kg at 25°C). This is calculated using the thermoneutral voltage and the actual stack voltage – considering 1% losses from recombination. For example, at 25°C it would be calculated using the following formula: $= \frac{1.48 V \times number of cells}{Stack voltage} - 1\%.$	
9	Specific plant electrical input	The energy consumption for H ₂ production equals the hydrogen specific energy content in HHV (e.g. 39.4 kWh/kg at 25°C) divided by the electrolyser plant efficiency	
10	Plant electrical efficiency with maximised hydrogen production	The efficiency on electrolyser plant level, at nominal load operation, is determined under consideration of additional losses caused by auxiliary systems (i.e. system cooling, gas treatment, building ventilation, demin water production, provision of uninterruptible power for safety, control & automation systems)	
11	Average hydrogen production	Average hydrogen output of the system [kg/h] in a specified operating period = total power consumption on DC level multiplied by the stack electrical efficiency, and divided by the specific energy content of hydrogen in HHV and the total number of operating hours in the specified operating period. Alternatively, the average hydrogen output of the system in a specified operating period can be calculated from the stack current hours and related operating hours, considering production losses of 1% due to recombination: average production rate=	

v1.0

	1		,
		number of cells	
		×stack current hours [Ah]	
		÷operating hours	
		×0,03761 [g/Ah]×99%	
		Average oxygen production of the system	
		[kg/h] will be determined by directly	
12	Average oxygen	measuring the flow of oxygen after cooling.	
	production	This oxygen measurement can be used as	
		a cross check for the hydrogen production	
		rate.	
		The efficiency degradation of the stack(s) determined as increase in cell voltage	
		averaged over the cells of the stacks(s)	
	Efficiency	divided by the number of operating hours in	
13	degradation	a specified period $[\mu V/h]$. Nominal hydrogen	
1	dogradation	production level will be used as a reference	
		point for calculating the voltage degradation	
		rate.	
		Increase in cell voltage averaged over the	
		cells of the stack(s) after every thousand	
l		hours the electrolyser system has been in	
		operation = $(1.48 * (1 / V_{t=0} - 1 / V_t) * 100\%)$	
		/ (t / 1000), where $V_{t=0}$ is the initial cell	
	Efficiency	voltage, V_t is the cell voltage after an	
14	degradation per	operating time t measured in hours. The	
	1000h	efficiency degradation is the absolute	
		decrease of the stack efficiency; i.e. the	
		decrease in efficiency in percent point.	
		Nominal hydrogen production level will be	
		used as a reference point for calculating	
		the voltage degradation rate.	
		The electrolyser plant's power consumption	
	External power	is limited due to external events (e.g. in the	
15	limitation (time)	electricity grid) = $(t_{OP}-t_L) / t_{OP} * 100 [\%]$	
		t _L time of limitation	
		t _{OP} operating period	
		The electrolyser plant's power consumption	
4.0	Plant power	is limited due to electrolyser plant events =	
16	limitation (time)	$(t_{OP} - t_L) / t_{OP} * 100 [\%]$	
		t _L time of limitation	
		top operating period	
		The electrolyser plant's power consumption	
		is limited due to external events (e.g. in the electricity grid) = $(P_1 * t_2) / (P_2 * t_2) * 100$	
	Extornal newer	electricity grid) = $(P_L * t_L) / (P_R * t_{OP}) * 100$	
17	External power limitation (power)	[%] P _L power limitation	
		$P_{\rm R}$ rated power	
		t_{L} time period of power limitation	
		top operating period	
		The electrolyser plant's power consumption	
		is limited due to electrolyser plant events =	
		$(P_L * t_L) / (P_R * t_{OP}) * 100 [\%]$	
18	Plant power	P_{L} power limitation	
.0	limitation (power)	P_R rated power	
		t_{L} time period of power limitation	
		t _{OP} operating period	
		Availability of the electrolyser plant in the	
		considered operating period relative to the	
		total operating period = $(t_{OT_{total}} - t_{D_{plant} u&p})$	
		/ $t_{OT_total} * 100$ [%], with t_{OT_total} is the total	
	Availability	operating period and $t_{D plant u&p}$ is the	
19	unplanned and	planned and unplanned downtime of the	
	planned	electrolyser plant in the operating period	
		due to any failure of the stacks, power	
		conversion or auxiliaries systems and	
		maintenance	
	J		1

1.6 Use case conditions

Use case conditions	
Assumptions	
Prerequisites	
Electrolyser and infrastructure components are installed, commissioned and ready for operation	
Permission to operate the electrolyser has been granted	
Electrical energy is available with required amount	


1.7 Further information to the use case for classification / mapping

Classification information	
Relation to other use cases	
Use case of the WP2.2 of H2FUTURE	
Level of depth	
Individual Use Case	
Prioritisation	
Implemented in demo	
Generic, regional or national relation	
Austria	
Nature of the use case	
Technical	
Further keywords for classification	
Continuous operation, degradation, electrolyser	

1.8 General remarks

General remarks

2 Diagrams of use case

3 Technical details

3.1 Actors

Actors						
Grouping		Group description				
Process/Field/Station actors		Actors in Process, Field, Station leve	els			
Actor name	Actor type	Actor description	Further information specific to this use case			
Electrolyser	Component	An electrolyser is a technology allowing to convert electricity into hydrogen (and oxygen). It consists of electrolyser stacks (several electrolyser cells stacked to a larger unit) and the transformer rectifier system providing the electrical power				
Intelligent Electronic Device (IED)	Component	Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers)	In this Use Case, the IED collects power measurements from the AC grid and sends them to the SCADA of the electrolyser			
SCADA Electrolyser	Application	Supervisory control and data acquisition – an industrial control system to control and monitor a process and to gather process data. A SCADA consists of programmable logic controllers and human-machine interface computers with SCADA software. The SCADA system directly interacts with devices such as valves, pumps, sensors, actors and so on	In this use case the SCADA controls the electrolyser process and sets the DC power input for the electrolyser stack			

3.2 References

References						
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

Scer	Scenario conditions							
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre-condition	Post- condition		
1	Monitoring	IED measures the power consumption of the electrolyser	IED	periodically	SCADA is running and data connection is established			
2	Control	SCADA sends control commands to the electrolyser in order to change its power consumption	SCADA Electro- lyser	periodically	SCADA is running and the electrolyser system is running or ready to start.	Electrolyser adepts its power consumption according to the control commands		

4.2 Steps – Scenarios

Scen	ario name:	No. 1 – Monitoring								
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information exchanged (IDs)	Require ment, R-IDs		
1	Periodically	Get grid measurement	IED performs measurement of local grid	INTERNAL OPERATION	IED	IED	G_M			
2	Periodically	Show grid measurement to SCADA	IED sends measurements to SCADA	SHOW	IED	SCADA Electrolyser	G_M			
Scen	nario name:	No. 2 – Conti	No. 2 – Control							
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information exchanged (IDs)	Require ment, R-IDs		
1	Periodically	Show electrolyser measurement to SCADA	Electrolyser sends measurements to SCADA	SHOW	Electrolyser	SCADA Electrolyser	E_M			
2	Periodically	Supervise electrolyser operation	SCADA keeps electrolyser consumption at constant level (rated power)	INTERNAL OPERATION	SCADA Electrolyser	SCADA Electrolyser				
3	Periodically	Control process	SCADA sends set point to the electrolyser system	CHANGE	SCADA Electrolyser	Electrolyser	SP_V			

5 Information exchanged

Information exchanged					
Information exchanged, ID	Name of information	Description of information exchanged	Requirement, R-IDs		
G_M	Grid Measurement	Measurement of the power consumed by the transformer- rectifier system of the electrolyser			
E_M	Electrolyser Measurement	Measurement indicating the DC current consumption of the electrolyser which is then used to calculate the hydrogen production			
SP_V	Set-Point Value	Set-point for controlling the hydrogen production of the electrolyser			

6 Requirements (optional)

Requirements (optional)					
Categories ID	Category name for requirements	Category description			
Requirement R-ID	Requirement name	Requirement description			

7 Common terms and definitions

Common terms and definitions			
Term	Definition		

8 Custom information (optional)

Custom information (optional)	

4 References

4.1 **Project Documents of H2FUTURE**

D2.1 Specifications of Pilot Test 1 / Use Case 1

D2.2 Specifications of Pilot Test 2 / Use Case 2

D2.3 Specifications of Pilot Test 3 / Use Case 3

D2.4 Specifications of Pilot Test 4 / Use Case 4

- D2.5 Specifications of Pilot Test 5 / Use Case 5
- D2.6 Specifications of quasi-commercial Operation
- D2.7 Specifications of Final Tests
- D2.8 KPIs to monitor the Demonstrations and perform the Exploitation Tasks

4.2 External Documents

International Electrotechnical Commission (IEC) (2015): IEC 62559-2 "Use case methodology – Part 2: Definition of the templates for use cases, actor list and requirements list", 2015

OFFIS (2013): "Architecture templates and guidelines", deliverable D1.3 of the DISCERN project, available at <u>https://www.discern.eu/project_output/deliverables.html</u>, 2013