


# **Deliverable D2.3**

# Specifications of Pilot Test 3 / Use Case 3

V1.0





# **Document Information**

| Deliverable Title                  | Specifications of Pilot Test 3 / Use Case 3 |  |
|------------------------------------|---------------------------------------------|--|
| Number of the Deliverable          | D2.3                                        |  |
| WP/Task related                    | WP2 / WP2.3                                 |  |
| Distribution/Confidentiality       | PU Public                                   |  |
| Date of Delivery                   | 30-06-2017                                  |  |
| Status and Version                 | Final Version 1.0                           |  |
| Number of Pages                    | 30 pages                                    |  |
| Person Responsible for<br>Document | Karl Zach – VERBUND                         |  |
| Author(s)                          | Karl Zach, Rudolf Zauner – VERBUND          |  |
| Reviewers                          | Ronald Engelmair, Thomas Zöhrer - APG       |  |



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.



# **Revision History**

| Version | Date       | Author / Reviewer  | Notes               |
|---------|------------|--------------------|---------------------|
| 0.1     | 24/05/2017 | K. Zach, R. Zauner | First draft version |
| 1.0     | 09/06/2017 | K. Zach            | Final version       |
|         |            |                    |                     |
|         |            |                    |                     |
|         |            |                    |                     |
|         |            |                    |                     |



# **Executive Summary**

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project.

This document, deliverable D2.3, details the specifications for use case / pilot test 3 - technical testing of the PEM-facility to meet the requirements of the grid services and power price opportunities. The aim of this use case is to validate the technical suitability and responsiveness of the electrolyser unit to participate in the (Austrian) power balancing/reserve markets. For this, three separate demonstrations / use cases are performed on providing Frequency Containment Reserve (FCR, primary control), automatic and manual Frequency Restoration Reserve (aFRR / mFRR; secondary and tertiary control).

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used, which is briefly introduced in chapter 2.

The filled-out use case templates for the three use case in pilot test 3, which contain the general narrative description, KPIs, sequence diagram, etc., can be found in chapter 3 - 5.



# **Table of Contents**

| Document Information                                                                                      |
|-----------------------------------------------------------------------------------------------------------|
| Revision History                                                                                          |
| Executive Summary4                                                                                        |
| Table of Contents5                                                                                        |
| 1 Introduction                                                                                            |
| 1.1 The H2FUTURE Project6                                                                                 |
| 1.2 Scope of the Document                                                                                 |
| 1.3 Notations, Abbreviations and Acronyms7                                                                |
| 2 Use Case Methodology                                                                                    |
| 2.1 Introduction to Use Cases                                                                             |
| 2.2 Use Case Template8                                                                                    |
| 3 Use Case / Pilot Test 3_1 – Provision of Primary Control / Frequency Containment Reserve .9             |
| 4 Use Case / Pilot Test 3_2 – Provision of Secondary Control / automatic Frequency<br>Restoration Reserve |
| 5 Use Case / Pilot Test 3_3 – Provision of Tertiary Control / manual Frequency Restoration<br>Reserve     |
| 6 References                                                                                              |
| 6.1 Project Documents of H2FUTURE                                                                         |
| 6.2 External Documents                                                                                    |



# **1** Introduction

# **1.1 The H2FUTURE Project**

As part of the H2FUTURE project a 6 MW polymer electrolyte membrane (PEM) electrolysis system will be installed at a steelworks in Linz, Austria. After the pilot plant has been commissioned, the electrolyser is operated for a 26-month demonstration period, which is split into five pilot tests and quasi-commercial operation. The aim of the demonstration is to show that the PEM electrolyser is able to produce green hydrogen from renewable electricity while using timely power price opportunities and to provide grid services (i.e. ancillary services) in order to attract additional revenue.

Subsequently, replicability of the experimental results on a larger scale in EU28 for the steel industry and other hydrogen-intensive industries is studied during the project. Finally, policy and regulatory recommendations are made in order to facilitate deployment in the steel and fertilizer industry, with low  $CO_2$  hydrogen streams also being provided by electrolysing units using renewable electricity.

# **1.2 Scope of the Document**

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project. Further on, in order to validate the commercial exploitation of the PEM electrolyser, to analyse the operational impacts and the deployment conditions of the resulting innovations, key performance indicators (KPIs), which are monitored during the demonstration, are also detailed in WP2. For each use case / pilot test specification (D2.1 – D2.5), for the specification of the quasi-commercial operation (D2.6), for the final technical review (D2.7) and for the monitored KPIs separate documents will be created in WP2.

This document, deliverable D2.3, details the specifications for use case / pilot test 3 - technical testing of the PEM-facility to meet the requirements of the grid services and power price opportunities. The aim of this use case is to validate the technical suitability and responsiveness of the electrolyser unit to participate in the (Austrian) power balancing/reserve markets.

For this, three separate demonstrations / use cases are performed on providing Frequency Containment Reserve (FCR, primary control), automatic and manual Frequency Restoration Reserve (aFRR / mFRR; secondary and tertiary control) to the Austrian transmission system operator (TSO) Austrian Power Grid (APG).

In chapter 2 of this document a brief introduction to the use case methodology and the use case template for WP2 is given. The three filled out use case templates for the different reserve market products are then provided in chapter 3 - 5.



# **1.3 Notations, Abbreviations and Acronyms**

| APG  | Austrian Power Grid            |  |
|------|--------------------------------|--|
| EC   | European Commission            |  |
| EU   | European Union                 |  |
| 505  | Frequency Containment          |  |
| FCR  | Reserve (primary control)      |  |
|      | automatic Frequency            |  |
| aFRR | Restoration Reserve (secondary |  |
|      | control)                       |  |
| mFRR | manual Frequency Restoration   |  |
|      | Reserve (tertiary control)     |  |
| IEC  | International Electrotechnical |  |
| IEC  | Commission                     |  |
| IED  | Intelligent Electronic Device  |  |
| KPI  | Key Performance Indicator      |  |
| NOC  | Network Operation Centre       |  |
| DEM  | Polymer Electrolyte Membrane / |  |
| PEM  | Proton Exchange Membrane       |  |
| RTU  | Remote Terminal Unit           |  |
| TSO  | Transmission System Operator   |  |
| WP   | Work Package                   |  |
|      |                                |  |

Table 1: Acronyms list

# 2 Use Case Methodology

# 2.1 Introduction to Use Cases

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used.

Use cases were initially developed and used within the scope of software engineering, and their application has been gradually extended to cover business process modelling. This methodology has extensively been used within the power supply industry for smart grid standardisation purposes by international and European standardisation organisations and projects, such as International Electrotechnical Commission (IEC), M/490 Smart Grid Coordination Group, EPRI Electricity Power Research Institute and National Institute of Standards and Technology (NIST).

In general, use cases describe in textual format how several actors interact within a given system to achieve goals, and the associated requirements. IEC 62559-2 defines a use case as "a specification of a set of actions performed by a system which yields an observable result that is of value for one or more actors or other stakeholders of the system". Use cases must capture all of the functional requirements of a given system (business process or function), and part of its non-functional requirements (performance, security, or interoperability for instance), not based on specific technologies, products or solutions.

The targets of actors can be of different levels, i.e. business or functional, and use cases can be of different levels of detail (very high-level or very specific, related to the task the user of a system may perform) accordingly. Business processes and the related requirements can be described in business use cases, while functions or sub-functions supporting the business processes and their associated requirements can be detailed in system use cases.

# 2.2 Use Case Template

For the H2FUTURE use cases a template based on the IEC 62559-2 (IEC, 2015) and the DISCERN project (OFFIS, 2013) has been used. This structured format for use case descriptions helps to describe, compare and administer use cases in a consistent way.

The use case template contains the following main information, structured in separate sections and tables:

- Administrative information (version management)
- Description of the use case (general narrative description, KPIs, use case conditions, etc.)
- Diagram(s) of the use case (e.g. sequence diagram)
- Technical details (actor description, references, etc.)
- Step-by-step analysis of the use case
- Information exchanged and requirements

The system use cases developed within task WP2.3 of the H2FUTURE project are described in the following sections of the document.



# 3 Use Case / Pilot Test 3\_1 – Provision of Primary Control / Frequency Containment Reserve

#### 1 Description of the use case

#### 1.1 Name of use case

| Use case identification |                                                           |                                                                 |  |  |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|--|--|
| ID                      | Area / Domain(s)/ Zone(s)Name of use case                 |                                                                 |  |  |
| UC3_1                   | Customer Premises / Process, Field,<br>Station, Operation | Provision of Primary Control / Frequency<br>Containment Reserve |  |  |

#### 1.2 Version management

| Version management |            |                      |                            |                    |
|--------------------|------------|----------------------|----------------------------|--------------------|
| Version<br>No.     | Date       | Name of<br>author(s) | Changes                    | Approval<br>status |
| 0.1                | 23/02/2017 | K. Zach              | First draft                |                    |
| 0.2                | 28/03/2017 | K. Zach              | Second draft               |                    |
| 0.3                | 03/04/2017 | R. Engelmair         | Review of second draft     |                    |
| 0.4                | 04/04/2017 | K. Zach              | Third draft incl. comments |                    |
| 0.5                | 11/04/2017 | K. Zach              | Forth draft                |                    |
| 0.6                | 15/05/2017 | T. Zöhrer            | Review of forth draft      |                    |
| 1.0                | 22/05/2017 | K. Zach              | Final version              |                    |

#### 1.3 Scope and objectives of use case

| Scope and objectives of use case                                                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>Scope</b> Automatic provision of primary control/frequency containment reserve by changing the power consumption of the electrolyser based on local grid frequency measurements |  |  |  |
| Objective(s)      Prequalification for / provision of primary control/ frequency containment<br>reserve to the Austrian TSO APG                                                    |  |  |  |
| Related business<br>case(s)                                                                                                                                                        |  |  |  |

#### 1.4 Narrative of Use Case

#### Narrative of use case

Short description This Use Case describes the provision of primary control/ frequency containment reserve which incorporates the periodic collection of frequency measurements from the grid and the corresponding commands sent from a SCADA application to change the power consumption of an electrolyser to counteract frequency deviations in the grid.

**Complete description** 

This Use Case describes the provision of primary control / frequency containment reserve (FCR) by an electrolyser to the Austrian TSO APG. The use case has three different scenarios: the reservation of primary control power, the real-time control of the electrolyser and the real-time monitoring for APG.

For the reservation of primary control power, APG reports the acceptance of bids of the weekly FCR tender to the network operation centre (NOC)/VERBUND. If a bid was accepted, the NOC calculates the needed FCR power that must be continuously reserved in the tender period by the electrolyser.

For the real-time control of the electrolyser, an Intelligent Electronic Device (IED) periodically collects measurements indicating the current state of the frequency and power consumption in the local electricity grid. The IED communicates the current state of the frequency and power to the SCADA application which controls the electrolyser. When frequency measurements leave a predefined threshold area, the SCADA application calculates the needed change of power consumption of the electrolyser. Then the SCADA system sends the respective setpoint to the electrolyser with the aim of maintaining frequency within limits. Consequently, the following steps are required in this scenario:

1. IED obtains frequency and power consumption measurements from the local grid

2. IED sends measurement data to the SCADA application



- In case it is necessary to change power consumption of the electrolyser to counteract the frequency change, the SCADA application sends the suitable commands accordingly.
  The electrolyser is preserved accordingly.
- 4. The electrolyser changes its power consumption

For the real-time monitoring for APG, the SCADA system periodically reports the current power consumption, frequency measurements etc. to a Remote Terminal Unit (RTU). The RTU forwards this parameters to the network operation centre (NOC) of VERBUND, which then sends the aggregated parameters of the pool for reporting to the Austrian TSO APG.

The use case will be operated with different capacity bands for ancillary services:

- +/- 1 MW at high partial load (e.g. at 5 MW)
- +/- 1 MW at low partial load (e.g. at 2,5 MW)
- Ancillary service over whole dynamic range of the electrolyser (i.e. between 20% and 100% of rated capacity which corresponds to 1,2 MW and 6 MW with a capacity band of +/- 2,4 MW)

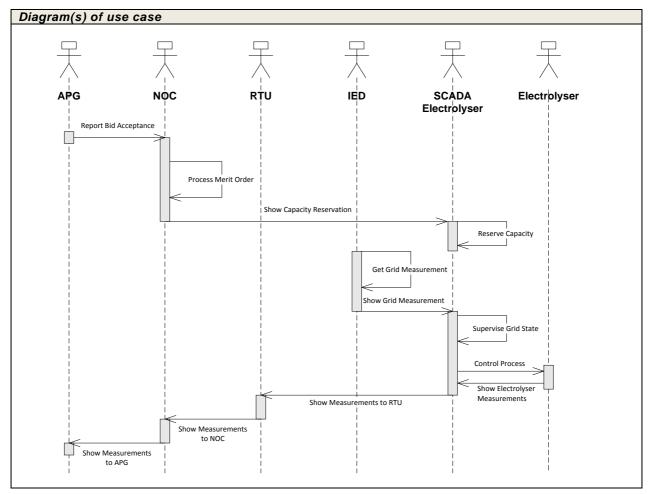
#### 1.5 Key performance indicators (KPI)

| Key              | Key performance indicators |                                                                       |                                               |  |  |
|------------------|----------------------------|-----------------------------------------------------------------------|-----------------------------------------------|--|--|
| ID               | Name                       | Description                                                           | Reference to mentioned<br>use case objectives |  |  |
|                  |                            | Droop of the system: $\sigma = \frac{\Delta f / f_n}{\Delta P / P_n}$ |                                               |  |  |
| 1                | 1 Linear activation        | $\Delta f$ frequency deviation                                        |                                               |  |  |
|                  |                            | f <sub>n</sub> nominal frequency (50 Hz)                              |                                               |  |  |
|                  |                            | $\Delta P$ power change                                               |                                               |  |  |
|                  |                            | P <sub>n</sub> nominal power                                          |                                               |  |  |
|                  |                            | 50% of dedicated/offered primary control power                        |                                               |  |  |
| 2 Activation spe |                            | must be linearly activated within 15 s in case of a                   |                                               |  |  |
|                  | Activation speed           | frequency deviation of +/- 100 mHz                                    |                                               |  |  |
|                  |                            | 100% of dedicated/offered primary control power                       |                                               |  |  |
|                  |                            | must be linearly activated within 30 s in case of a                   |                                               |  |  |
|                  |                            | frequency deviation of +/- 200 mHz                                    |                                               |  |  |

#### 1.6 Use case conditions

| Use case conditions                                                                                         |
|-------------------------------------------------------------------------------------------------------------|
| Assumptions                                                                                                 |
| Electrolyser is flexible and fast enough for primary control provision (see table of requirements)          |
| Prerequisites                                                                                               |
| Electrolyser can be operated in the whole frequency range from 47,5 Hz to 51,5 Hz, i.e. there is no         |
| frequency-dependent separation from the grid                                                                |
| Data connection APG <-> NOC <-> RTU <-> SCADA is established                                                |
| VERBUND's FCR pool offers sufficient backup capacity for the provision of FCR                               |
| The electrolyser system is successfully prequalified for the provision of FCR. The prequalification for the |
| provision of FCR to APG involves a proof of the functional capability (measurement protocol – see section   |
| 8 Custom information), which is successfully passed.                                                        |

#### 1.7 Further information to the use case for classification / mapping


| Classification information             |
|----------------------------------------|
| Relation to other use cases            |
| Jse case of the WP2.3 of H2FUTURE      |
| Level of depth                         |
| ndividual Use Case                     |
| Prioritisation                         |
| mplemented in demo                     |
| Generic, regional or national relation |
| Austria                                |
| Nature of the use case                 |
| Fechnical                              |
| Further keywords for classification    |
| Primary control, ancillary services    |



#### 1.8 General remarks

### General remarks

#### 2 Diagrams of use case



#### 3 Technical details

#### 3.1 Actors

| Actors                                 |            |                                                                                                                                                                                                                                                                               |                                                                                     |
|----------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Grouping                               |            | Group description                                                                                                                                                                                                                                                             |                                                                                     |
| Process/Field/Station                  | actors     | Actors in Process, Field, Station leve                                                                                                                                                                                                                                        | els                                                                                 |
| Actor name                             | Actor type | Actor description                                                                                                                                                                                                                                                             | Further information specific to this use case                                       |
| Austrian Power Grid<br>(APG)           | Role       | APG operates the Austrian<br>transmission grid and balancing<br>markets and monitors the<br>provision of the grid services                                                                                                                                                    |                                                                                     |
| Electrolyser                           | Component  | An electrolyser is a technology<br>allowing to convert electricity into<br>hydrogen (and oxygen). It consists<br>of electrolyser stacks (several<br>electrolyser cells stacked to a<br>larger unit) and the transformer<br>rectifier system providing the<br>electrical power | In this use case the<br>electrolyser is the<br>technical unit which<br>provides FCR |
| Intelligent Electronic<br>Device (IED) | Component  | Any device incorporating one or<br>more processors with the<br>capability to receive or send                                                                                                                                                                                  | In this Use Case, the<br>IED collects<br>frequency & power                          |



|                                   |             | data/control from or to an external<br>source (e.g., electronic<br>multifunction meters, digital relays,<br>controllers)                                                                                                                                                                                                                                                              | measurements from<br>the grid, sends<br>frequency changes to<br>the SCADA                                                    |
|-----------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Network Operation<br>Centre (NOC) | Application | A NOC or virtual power plant is an application that optimises the dispatch of technical units                                                                                                                                                                                                                                                                                         |                                                                                                                              |
| Remote Terminal<br>Unit (RTU)     | Component   | A RTU is a microprocessor-<br>controlled electronic device that<br>interfaces objects in the physical<br>world to a distributed control<br>system or SCADA                                                                                                                                                                                                                            | In this Use Case, the<br>RTU collects<br>measurement data<br>from the SCADA and<br>sends them to the<br>NOC                  |
| SCADA Electrolyser                | Application | Supervisory control and data<br>acquisition – an industrial control<br>system to control and monitor a<br>process and to gather process<br>data. A SCADA consists of<br>programmable logic controllers<br>and human-machine interface<br>computers with SCADA software.<br>The SCADA system directly<br>interacts with devices such as<br>valves, pumps, sensors, actors<br>and so on | In this use case the<br>SCADA controls the<br>electrolyser process<br>and sets the DC<br>power for the<br>electrolyser stack |

### 3.2 References

| Refe | rences             |           |        |                       |                              |      |
|------|--------------------|-----------|--------|-----------------------|------------------------------|------|
| No.  | References<br>Type | Reference | Status | Impact on use<br>case | Originator /<br>organisation | Link |
|      |                    |           |        |                       |                              |      |

## 4 Step by step analysis of use case

#### 4.1 Overview of scenarios

| Sce | Scenario conditions     |                                                                                                                                                |                            |                                                                                                  |                                                                                             |                                                                                               |
|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| No. | Scenario<br>name        | Scenario description                                                                                                                           | Primary actor              | Triggering<br>event                                                                              | Pre-condition                                                                               | Post-<br>condition                                                                            |
| 1   | Capacity<br>reservation | After bid acceptance by<br>APG, the NOC informs<br>the SCADA system about<br>the needed capacity<br>reservation for FCR                        | NOC                        | APG sends<br>accepted bids to<br>NOC/VERBUND<br>(weekly)                                         | VERBUND<br>submitted bid(s)<br>for the FCR<br>tender to APG                                 |                                                                                               |
| 2   | Control                 | SCADA sends control<br>commands to the<br>electrolyser in order to<br>change its power<br>consumption to<br>counteract the frequency<br>change | SCADA<br>Electro-<br>lyser | SCADA receives<br>frequency<br>deviations from<br>IED which are out<br>of the predefined<br>area | All data<br>communications<br>are established.<br>The electrolyser<br>is up and<br>running. | Electrolyser<br>adapts its<br>power<br>consumption<br>according to<br>the control<br>commands |
| 3   | Monitoring              | SCADA reports the<br>current power<br>consumption, frequency<br>etc. to the NOC                                                                | SCADA<br>Electro-<br>lyser | SCADA<br>periodically<br>sends the data to<br>the RTU                                            | All data<br>communications<br>are established.<br>The RTU is up<br>and running.             | The NOC<br>forwards this<br>parameters<br>to APG                                              |

#### 4.2 Steps – Scenarios

| Scer        | nario        |                                 |                                                 |          |                                    |                                    |                                   |                           |
|-------------|--------------|---------------------------------|-------------------------------------------------|----------|------------------------------------|------------------------------------|-----------------------------------|---------------------------|
| Scen        | ario name:   | No. 1 – Capa                    | city reservation                                |          |                                    |                                    |                                   |                           |
| Step<br>No. | Event        | Name of<br>process/<br>activity | Description of<br>process/<br>activity          | Service  | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Weekly       | Report bid acceptance           | APG publishes<br>accepted bids of<br>FCR tender | REPORT   | APG                                | NOC                                |                                   |                           |
| 2           | NOC receives | Process                         | Based on the                                    | INTERNAL | NOC                                | NOC                                | FCR                               |                           |



V1.0

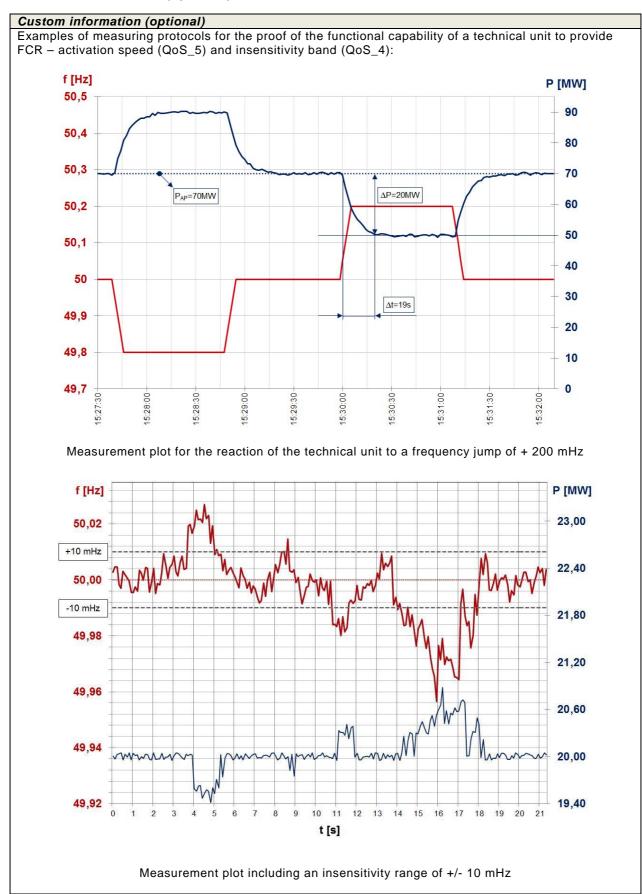
|             | tender<br>information                                      | capacity<br>reservation              | accepted bids,<br>NOC calculates                                                   | OPERATION             |                                    |                                    |                                   |                           |
|-------------|------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|---------------------------|
|             | mornation                                                  |                                      | needed capacity<br>reservation by<br>electrolyser                                  |                       |                                    |                                    |                                   |                           |
| 3           | NOC has<br>determined<br>FCR capacity<br>reservation       | Show capacity reservation            | NOC sends the<br>needed capacity<br>reservation by<br>electrolyser to<br>the SCADA | SHOW                  | NOC                                | SCADA<br>Electrolyser              | FCR                               |                           |
| 4           | SCADA<br>receives<br>needed FCR<br>capacity<br>reservation | Reserve<br>capacity                  | SCADA reserves<br>needed FCR<br>capacity of the<br>electrolyser                    | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              | FCR                               |                           |
| Scen        | nario name:                                                | No. 2 – Contr                        |                                                                                    |                       |                                    |                                    |                                   |                           |
| Step<br>No. | Event                                                      | Name of<br>process/<br>activity      | Description of<br>process/<br>activity                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                                               | Get grid<br>measurement              | IED performs<br>measurement                                                        | INTERNAL<br>OPERATION | IED                                | IED                                | F_M<br>PC_M                       | QoS_1<br>QoS_2<br>QoS_3   |
| 2           | Periodically                                               | Show grid<br>measurement<br>to SCADA | IED sends<br>measurements to<br>SCADA                                              | SHOW                  | IED                                | SCADA<br>Electrolyser              | F_M<br>PC_M                       | QoS_3                     |
| 3           | SCADA<br>receives<br>measurement<br>data                   | Supervise grid<br>state              | SCADA<br>supervises the<br>current<br>frequency state                              | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              | F_M                               |                           |
| 4           | Frequency<br>leaves<br>predefined<br>area                  | Control<br>process                   | SCADA<br>processes &<br>sends out<br>control<br>commands                           | CHANGE                | SCADA<br>Electrolyser              | Electrolyser                       | SP_V                              | QoS_4<br>QoS_5<br>QoS_6   |
| Scen        | ario name:                                                 | No. 3 – Monit                        |                                                                                    | •                     |                                    | •                                  | •                                 | •                         |
| Step<br>No. | Event                                                      | Name of<br>process/<br>activity      | Description of<br>process/<br>activity                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                                               | Show<br>electrolyser<br>measurement  | Electrolyser<br>sends<br>measurements to<br>SCADA                                  | SHOW                  | Electrolyser                       | SCADA<br>Electrolyser              | PC_M<br>OP_V                      | QoS_3<br>Conf_1           |
| 2           | Periodically                                               | Show<br>measurement<br>to RTU        | SCADA sends<br>measurements to<br>RTU                                              | SHOW                  | SCADA<br>Electrolyser              | RTU                                | PC_M<br>OP_V                      | QoS_3<br>Conf_1           |
| 3           | Periodically                                               | Show<br>measurement<br>to NOC        | RTU sends<br>measurements to<br>NOC                                                | SHOW                  | RTU                                | NOC                                | PC_M<br>OP_V                      | QoS_3<br>Conf_2<br>Conf_3 |
| 4           | Periodically                                               | Show<br>measurement<br>to APG        | NOC sends<br>measurements to<br>APG                                                | SHOW                  | NOC                                | RTU                                | PC_M<br>OP_V                      | QoS_3<br>Conf_4           |

### 5 Information exchanged

| Information exch             | Information exchanged               |                                                                                |                    |  |  |
|------------------------------|-------------------------------------|--------------------------------------------------------------------------------|--------------------|--|--|
| Information<br>exchanged, ID | Name of<br>information              | Description of information exchanged                                           | Requirement, R-IDs |  |  |
| FCR                          | FCR Capacity<br>Reservation         | Needed capacity reservation of<br>electrolyser for FCR for tendering<br>period |                    |  |  |
| F_M                          | Frequency<br>Measurement            | Measurement indicating the frequency at the grid connection point.             | QoS_1<br>QoS_3     |  |  |
| PC_M                         | Power<br>Consumption<br>Measurement | Measurement indicating the power consumption of the electrolyser.              | QoS_2<br>QoS_3     |  |  |
| SP_V                         | Set-Point Value                     | Set-point for controlling of the<br>electrolyser                               |                    |  |  |
| OP_V                         | Operating Point<br>Value            | Operating point of the electrolyser                                            | QoS_3              |  |  |



## 6 Requirements (optional)


| Requirements (op    |                                         |                                                                                                                                                                                                                                                                                       |  |
|---------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Categories ID       | Category name<br>for requirements       | Category description                                                                                                                                                                                                                                                                  |  |
| QoS                 | Quality of Service<br>Issues            | Requirements regarding the Quality of Service (e.g. availability of the system, acceptable downtime, etc.)                                                                                                                                                                            |  |
| Requirement<br>R-ID | Requirement name                        | Requirement description                                                                                                                                                                                                                                                               |  |
| QoS_1               | Frequency<br>measurement<br>error       | The error of the frequency measurements must not exceed +/- 5 mHz.                                                                                                                                                                                                                    |  |
| QoS_2               | Power<br>consumption<br>measurement     | The meter for measuring the power consumption must at least have an accuracy class 0,5.                                                                                                                                                                                               |  |
| QoS_3               | Measurement<br>interval                 | The measurement/data interval has to be 2 seconds (each full even second, GPS time).                                                                                                                                                                                                  |  |
| QoS_4               | Insensitivity range                     | Insensitivity range: 50 Hz +/- 10 mHz – in this range the electrolyser doesn't have to provide primary control                                                                                                                                                                        |  |
| QoS_5               | Activation speed                        | 50% of dedicated/offered primary control power must be<br>activated within 15 s in case for frequency deviations up to +/-<br>100 mHz<br>100% of dedicated/offered primary control power must be<br>linearly activated within 30 s in case of a frequency deviation of<br>+/- 200 mHz |  |
| QoS_6               | Linear activation                       | Droop of the system: $\sigma = \frac{\Delta f / f_n}{\Delta P / P_n}$<br>$\Delta f \dots$ frequency deviation<br>$f_n \dots$ nominal frequency (50 Hz)<br>$\Delta P \dots$ power change<br>$P_n \dots$ nominal power                                                                  |  |
| Categories ID       | Category name<br>for requirements       | Category description                                                                                                                                                                                                                                                                  |  |
| Conf                | Configuration<br>Issues                 | Requirements regarding communication configurations                                                                                                                                                                                                                                   |  |
| Requirement<br>R-ID | Requirement name                        | Requirement description                                                                                                                                                                                                                                                               |  |
| Conf_1              | Communication<br>protocol SCADA-<br>RTU | Possible Communication protocol between SCADA <-> RTU:<br>Modbus, Profibus                                                                                                                                                                                                            |  |
| Conf _2             | Communication<br>protocol RTU-<br>NOC   | Possible Communication protocol between RTU <-> NOC:<br>Modbus, IEC 60870-5-104                                                                                                                                                                                                       |  |
| Conf_3              | Encryption                              | Communication is encrypted via OpenVPN                                                                                                                                                                                                                                                |  |
| Conf_4              | Communication<br>protocol APG-<br>NOC   | Communication protocol between APG <-> NOC:<br>IEC 60870-5-101                                                                                                                                                                                                                        |  |

### 7 Common terms and definitions

| Common terms and definitio                               | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                                                     | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Primary Control / Frequency<br>Containment Reserve (FCR) | FCR is generally provided by power plants and used to automatically<br>compensate an imbalance between generation and consumption within a<br>few seconds through corresponding activation (control) thus leading to<br>the stabilisation of the frequency in the interconnected electricity grid.<br>Activation is automatically triggered by frequency deviation from the<br>target value (50 Hz), whereby the activated FCR increases proportionate<br>to the magnitude of the deviation. |



#### 8 Custom information (optional)





# 4 Use Case / Pilot Test 3\_2 – Provision of Secondary Control / automatic Frequency Restoration Reserve

#### 1 Description of the use case

#### 1.1 Name of use case

| Use case | e identification                                          |                                                                       |
|----------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| ID       | Area / Domain(s)/ Zone(s)                                 | Name of use case                                                      |
| UC3_2    | Customer Premises / Process, Field,<br>Station, Operation | Provision of Secondary Control / autom. Frequency Restoration Reserve |

#### 1.2 Version management

| Version m      | anagement  |                      |                       |                    |
|----------------|------------|----------------------|-----------------------|--------------------|
| Version<br>No. | Date       | Name of<br>author(s) | Changes               | Approval<br>status |
| 0.1            | 12/04/2017 | K. Zach              | First draft           |                    |
| 0.2            | 16/05/2017 | T. Zöhrer            | Review of first draft |                    |
| 1.0            | 22/05/2017 | K. Zach              | Final version         |                    |

#### 1.3 Scope and objectives of use case

| Scope and objectives of use case                                                                                                      |                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Scope                                                                                                                                 | Provision of secondary control/frequency restoration reserve by changing the power consumption of the electrolyser based on online set point values |  |
| Objective(s)      Prequalification for / provision of secondary control/ autom. frequency restoration reserve to the Austrian TSO APG |                                                                                                                                                     |  |
| Related business<br>case(s)                                                                                                           | Flexibility provision                                                                                                                               |  |

#### 1.4 Narrative of Use Case

#### Narrative of use case

Short description

This Use Case describes the provision of secondary control/ autom. frequency restoration reserve by an electrolyser which includes the adaption of the power consumption of the electrolyser to online control commands close to real time and the corresponding monitoring.

#### Complete description

This Use Case describes the provision of secondary control / automatic frequency restoration reserve (aFRR) by an electrolyser to the Austrian transmission system operator Austrian Power Grid (APG). The use case has three different scenarios: the reservation of secondary control power, the real-time control of the electrolyser and the real-time monitoring for APG.

For the reservation of aFRR, APG reports the acceptance of bids of the aFRR tender to the network operation centre (NOC)/VERBUND. If a bid was accepted, the NOC calculates the needed aFRR power that must be continuously reserved in the tender period by the electrolyser.

In case of an aFRR activation, APG sends the respective online set-point command to the NOC, which then calculates the online set-points for a selected set of the aggregated units in the pool (depending on the internal merit order). If the electrolyser is selected for an activation, the NOC forwards the calculated set-point to the Remote Terminal Unit (RTU). Then, the RTU forwards the set-point to the SCADA application of the electrolyser, which then calculates the needed change of power consumption of the electrolyser, which then calculates the respective control commands to the electrolyser, which then adapts its power consumption. Consequently, the following steps are required in this scenario:

- 1. APG sends set-point command to the NOC
- 2. The NOC calculates the set-point of the electrolyser
- 3. The NOC sends the set-point to the RTU
- 4. The RTU sends the set-point to the SCADA application of the electrolyser
- 5. The SCADA system calculates the set-point of the electrolyser



- 6. The SCADA system sends the suitable commands to the electrolyser
- 7. The electrolyser changes its power consumption accordingly

For the real-time control of the electrolyser and the real-time monitoring for APG, an Intelligent Electronic Device (IED) periodically collects measurements indicating the current power consumption of the technical unit. The IED communicates the current power to the SCADA application of the electrolyser. The SCADA system periodically reports the current power consumption, etc. to the RTU. The RTU forwards this parameters to the NOC, which then sends the aggregated parameters of the pool for reporting to APG.

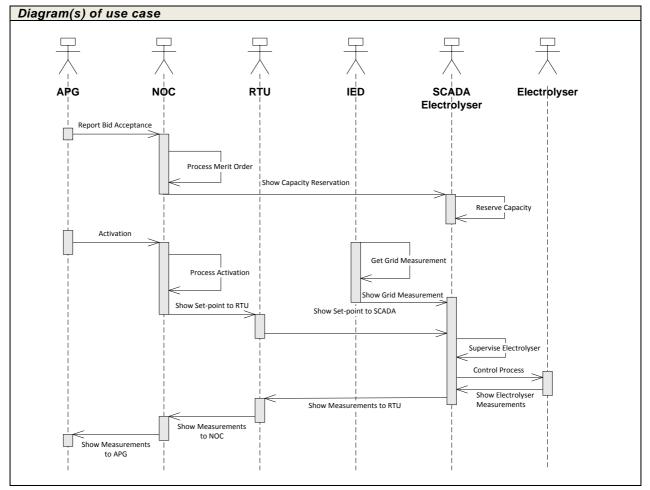
#### 1.5 Key performance indicators (KPI)

| Key | performance indica         | tors                                                                                                                                                                                                                                                                                                                                                 |                                               |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ID  | Name                       | Description                                                                                                                                                                                                                                                                                                                                          | Reference to mentioned<br>use case objectives |
| 1   | Error margin of activation | The electrolyser adapts its power<br>consumption according to the online set-<br>point of the NOC. In case of over- or under-<br>activation of the electrolyser the following<br>error margin can be calculated:<br>$(P_{act} - P_{set}) / P_{act} [\%]$<br>$P_{act} actual power consumptionP_{set} target power consumption accordingto set-point$ |                                               |

#### 1.6 Use case conditions

| Use case conditions                                                                                          |
|--------------------------------------------------------------------------------------------------------------|
| Assumptions                                                                                                  |
| Electrolyser is flexible and fast enough for secondary control provision (see table of requirements)         |
| Prerequisites                                                                                                |
| Electrolyser can be operated in the whole frequency range from 47,5 Hz to 51,5 Hz, i.e. there is no          |
| requency-dependent separation from the grid                                                                  |
| Data connection APG <-> NOC <-> RTU <-> SCADA is established                                                 |
| The electrolyser system is successfully prequalified for the provision of aFRR. The prequalification for the |
| provision of aFRR to APG involves a proof of the functional capability (measurement protocol – see           |
| section 8 Custom information).                                                                               |

#### 1.7 Further information to the use case for classification / mapping


| Classification information                                           |
|----------------------------------------------------------------------|
| Relation to other use cases                                          |
| Use case of the WP2.3 of H2FUTURE                                    |
| Level of depth                                                       |
| Individual Use Case                                                  |
| Prioritisation                                                       |
| Implemented in demo                                                  |
| Generic, regional or national relation                               |
| Austria                                                              |
| Nature of the use case                                               |
| Technical                                                            |
| Further keywords for classification                                  |
| Secondary control, frequency restoration reserve, ancillary services |

#### 1.8 General remarks

General remarks



#### 2 Diagrams of use case



### 3 Technical details

#### 3.1 Actors

| Actors                                 | Actors      |                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |
|----------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Grouping                               |             | Group description                                                                                                                                                                                                                                                             |                                                                                                                          |  |  |  |
| Process/Field/Station                  | actors      | Actors in Process, Field, Station leve                                                                                                                                                                                                                                        | els                                                                                                                      |  |  |  |
| Actor name                             | Actor type  | Actor description                                                                                                                                                                                                                                                             | Further information specific to this use case                                                                            |  |  |  |
| Austrian Power Grid<br>(APG)           | Role        | APG operates the Austrian grid<br>balancing markets and monitors<br>the provision of aFRR                                                                                                                                                                                     |                                                                                                                          |  |  |  |
| Electrolyser                           | Component   | An electrolyser is a technology<br>allowing to convert electricity into<br>hydrogen (and oxygen). It consists<br>of electrolyser stacks (several<br>electrolyser cells stacked to a<br>larger unit) and the transformer<br>rectifier system providing the<br>electrical power | In this use case the<br>electrolyser is the<br>technical unit which<br>provides aFRR                                     |  |  |  |
| Intelligent Electronic<br>Device (IED) | Component   | Any device incorporating one or<br>more processors with the<br>capability to receive or send<br>data/control from or to an external<br>source (e.g., electronic<br>multifunction meters, digital relays,<br>controllers)                                                      | In this Use Case, the<br>IED collects power<br>measurements from<br>the grid, sends<br>frequency changes to<br>the SCADA |  |  |  |
| Network Operation<br>Centre (NOC)      | Application | A NOC or virtual power plant is an application that optimises the                                                                                                                                                                                                             |                                                                                                                          |  |  |  |



V1.0

|                               |             | dispatch of technical units                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |
|-------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Remote Terminal<br>Unit (RTU) | Component   | A RTU is a microprocessor-<br>controlled electronic device that<br>interfaces objects in the physical<br>world to a distributed control<br>system or SCADA                                                                                                                                                                                                                            | In this Use Case, the<br>RTU collects<br>measurement data<br>from the SCADA and<br>sends them to the<br>NOC                  |
| SCADA Electrolyser            | Application | Supervisory control and data<br>acquisition – an industrial control<br>system to control and monitor a<br>process and to gather process<br>data. A SCADA consists of<br>programmable logic controllers<br>and human-machine interface<br>computers with SCADA software.<br>The SCADA system directly<br>interacts with devices such as<br>valves, pumps, sensors, actors<br>and so on | In this use case the<br>SCADA controls the<br>electrolyser process<br>and sets the DC<br>power for the<br>electrolyser stack |

### 3.2 References

| References |                    |           |        |                       |                              |      |
|------------|--------------------|-----------|--------|-----------------------|------------------------------|------|
| No.        | References<br>Type | Reference | Status | Impact on use<br>case | Originator /<br>organisation | Link |
|            |                    |           |        |                       |                              |      |

## 4 Step by step analysis of use case

#### 4.1 Overview of scenarios

| Sce | Scenario conditions              |                                                                                                                                                                                                         |                            |                                                          |                                                                                             |                                                                                               |  |  |
|-----|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| No. | o. Scenario Scenario description |                                                                                                                                                                                                         | Primary<br>actor           | Triggering<br>event                                      | Pre-condition                                                                               | Post-<br>condition                                                                            |  |  |
| 1   | Capacity reservation             | After bid acceptance by<br>APG, the NOC reserves<br>the capacity for aFRR                                                                                                                               | NOC                        | APG sends<br>accepted bids to<br>NOC/VERBUND<br>(weekly) | VERBUND<br>submitted bid(s)<br>for the aFRR<br>tender to APG                                |                                                                                               |  |  |
| 2   | Control                          | NOC calculates set-point<br>based on APG input and<br>forwards it to the SCADA<br>which then controls the<br>electrolyser in order to<br>change its power<br>consumption according to<br>this set-point | SCADA<br>Electro-<br>lyser | NOC receives<br>set-point from<br>APG                    | All data<br>communications<br>are established.<br>The electrolyser<br>is up and<br>running. | Electrolyser<br>adapts its<br>power<br>consumption<br>according to<br>the control<br>commands |  |  |
| 3   | Monitoring                       | SCADA reports the<br>current power<br>consumption, etc. to the<br>NOC                                                                                                                                   | SCADA<br>Electro-<br>lyser | SCADA<br>periodically<br>sends the data to<br>the RTU    | All data<br>communications<br>are established.<br>The RTU is up<br>and running.             | The NOC<br>forwards this<br>parameters<br>to APG                                              |  |  |

## 4.2 Steps – Scenarios

| Scer        | Scenario                              |                                    |                                                                                                            |                                    |                                   |                           |      |  |
|-------------|---------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------|------|--|
| Scen        | ario name:                            | No. 1 – Capa                       | city reservation                                                                                           |                                    |                                   |                           |      |  |
| Step<br>No. | Event                                 | process/ process/ Service producer |                                                                                                            | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |      |  |
| 1           | Weekly                                | Report bid<br>acceptance           | APG publishes<br>accepted bids of<br>aFRR tender                                                           | REPORT                             | APG                               | NOC                       |      |  |
| 2           | NOC receives<br>tender<br>information | Process Merit<br>Order             | Based on the<br>accepted bids,<br>NOC calculates<br>and reserves the<br>needed capacity<br>by electrolyser | INTERNAL<br>OPERATION              | NOC                               | NOC                       | aFRR |  |
| 3           | NOC has                               | Show capacity                      | NOC sends the                                                                                              | SHOW                               | NOC                               | SCADA                     | aFRR |  |



V1.0

|             | determined<br>aFRR<br>capacity<br>reservation               | reservation                         | needed capacity<br>reservation by<br>electrolyser to<br>the SCADA                                  |                       |                                    | Electrolyser                       |                                   |                           |
|-------------|-------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|---------------------------|
| 4           | SCADA<br>receives<br>needed aFRR<br>capacity<br>reservation | Reserve<br>capacity                 | SCADA reserves<br>needed FCR<br>capacity of the<br>electrolyser                                    | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              | aFRR                              |                           |
| Scen        | ario name:                                                  | No. 2 – Contr                       | ol                                                                                                 |                       |                                    |                                    |                                   |                           |
| Step<br>No. | Event                                                       | Name of<br>process/<br>activity     | Description of<br>process/<br>activity                                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                                                | Activation                          | APG sends set-<br>point to NOC                                                                     | SHOW                  | APG                                | NOC                                | SP_V                              | QoS_2<br>Conf_4           |
| 2           | NOC receives set-point                                      | Process<br>activation               | Based on the<br>received set-<br>point, NOC<br>calculates the<br>set-point for the<br>electrolyser | INTERNAL<br>OPERATION | NOC                                | NOC                                |                                   |                           |
| 3           | Periodically                                                | Show set-point<br>to RTU            | NOC sends set-<br>point to RTU                                                                     | SHOW                  | NOC                                | RTU                                | SP_V                              | QoS_2<br>Conf_2<br>Conf_3 |
| 4           | Periodically                                                | Show set-point to SCADA             | RTU sends set-<br>point to SCADA                                                                   | SHOW                  | RTU                                | SCADA<br>Electrolyser              | SP_V                              | QoS_2<br>Conf_1           |
| 3           | SCADA<br>receives set-<br>point                             | Supervise<br>electrolyser           | SCADA<br>supervises the<br>current<br>electrolyser<br>state based on<br>the received set-<br>point | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              |                                   |                           |
| 4           | Periodically                                                | Control<br>process                  | SCADA<br>processes &<br>sends out<br>control<br>commands                                           | CHANGE                | SCADA<br>Electrolyser              | Electrolyser                       | SP_E                              | QoS_3<br>QoS_4            |
| Scen        | ario name:                                                  | No. 3 – Monit                       | oring                                                                                              |                       |                                    |                                    |                                   |                           |
| Step<br>No. | Event                                                       | Name of<br>process/<br>activity     | Description of<br>process/<br>activity                                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                                                | Get grid<br>measurement             | IED performs<br>measurement                                                                        | INTERNAL<br>OPERATION | IED                                | IED                                | PC_M                              | QoS_1<br>QoS_2            |
| 2           | Periodically                                                | Show grid<br>measurement            | IED sends<br>measurements to<br>SCADA                                                              | SHOW                  | IED                                | SCADA<br>Electrolyser              | PC_M                              | QoS_2                     |
| 3           | Periodically                                                | Show<br>electrolyser<br>measurement | Electrolyser<br>sends<br>measurements to<br>SCADA                                                  | SHOW                  | Electrolyser                       | SCADA<br>Electrolyser              | PC_M                              | QoS_2                     |
| 4           | Periodically                                                | Show<br>measurement<br>to RTU       | SCADA sends<br>electrolyser and<br>grid<br>measurements to<br>RTU                                  | SHOW                  | SCADA<br>Electrolyser              | RTU                                | PC_M<br>OP_V                      | QoS_2<br>Conf_1           |
| 5           | Periodically                                                | Show<br>measurement<br>to NOC       | RTU sends<br>measurements to<br>NOC                                                                | SHOW                  | RTU                                | NOC                                | PC_M<br>OP_V                      | QoS_2<br>Conf_2<br>Conf_3 |
| 6           | Periodically                                                | Show<br>measurement<br>to APG       | NOC sends<br>measurements to<br>APG                                                                | SHOW                  | NOC                                | RTU                                | PC_M<br>OP_V                      | QoS_2<br>Conf_4           |

## 5 Information exchanged

| Information exchanged        |                              |                                                                                 |                    |  |  |
|------------------------------|------------------------------|---------------------------------------------------------------------------------|--------------------|--|--|
| Information<br>exchanged, ID | Name of<br>information       | Description of information exchanged                                            | Requirement, R-IDs |  |  |
| aFRR                         | aFRR Capacity<br>Reservation | Needed capacity reservation of<br>electrolyser for aFRR for tendering<br>period |                    |  |  |
| PC_M                         | Power<br>Consumption         | Measurement indicating the power consumption of the electrolyser.               | QoS_1<br>QoS_2     |  |  |

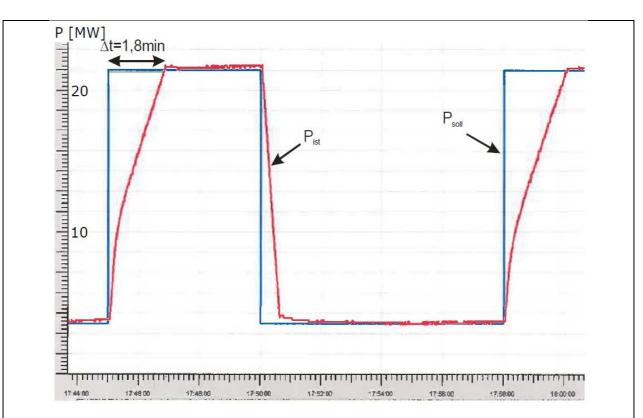


|      | Measurement               |                                                  |       |
|------|---------------------------|--------------------------------------------------|-------|
| SP_V | Set-point Value           | Set-point data by APG and the NOC                | QoS_2 |
| SP_E | Set-point<br>Electrolyser | Set-point for controlling of the<br>electrolyser |       |
| OP_V | Operating Point<br>Value  | Operating point of the electrolyser              | QoS_3 |

### 6 Requirements (optional)

| Requirements (op    | tional)                                 |                                                                                                                                                  |  |
|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Categories ID       | Category name<br>for requirements       | Category description                                                                                                                             |  |
| QoS                 | Quality of Service<br>Issues            | Requirements regarding the Quality of Service (e.g. availability of the system, acceptable downtime, etc.)                                       |  |
| Requirement<br>R-ID | Requirement name                        | Requirement description                                                                                                                          |  |
| QoS_1               | Power<br>consumption<br>measurement     | The meter for measuring the power consumption must at least have an accuracy class 0,5.                                                          |  |
| QoS_2               | Data interval                           | The measurement/data interval has to be 2 seconds (each full even second, GPS time).                                                             |  |
| QoS_3               | Error margin                            | Max. error of activation: -3% / +10%                                                                                                             |  |
| QoS_4               | Activation speed                        | 100% of dedicated/offered aFRR power must be activated within<br>5 minutes; a reaction of the technical unit should be visible<br>within seconds |  |
| Categories ID       | Category name<br>for requirements       | Category description                                                                                                                             |  |
| Conf                | Configuration<br>Issues                 | Requirements regarding communication configurations                                                                                              |  |
| Requirement<br>R-ID | Requirement name                        | Requirement description                                                                                                                          |  |
| Conf_1              | Communication<br>protocol SCADA-<br>RTU | Possible communication protocol between SCADA <-> RTU:<br>Modbus, Profibus                                                                       |  |
| Conf _2             | Communication<br>protocol RTU-<br>NOC   | Possible communication protocol between RTU <-> NOC:<br>Modbus, IEC 60870-5-104                                                                  |  |
| Conf_3              | Encryption                              | Communication is encrypted via OpenVPN                                                                                                           |  |
| Conf_4              | Communication<br>protocol APG-<br>NOC   | Communication protocol between APG <-> NOC:<br>IEC 60870-5-101                                                                                   |  |

#### 7 Common terms and definitions


| Common terms and definitions                                             |                                                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Term                                                                     | Definition                                                                                                                                                                                                                                                                         |  |  |
| Secondary Control /<br>automatic Frequency<br>Restoration Reserve (aFRR) | Secondary control power / aFRR is used to restore the availability of the power bandwidth of the activated primary control power / frequency containment reserve (FCR). aFRR is automatically activated to relieve FCR so that it can resume its function of balancing the system. |  |  |

#### 8 Custom information (optional)

#### Custom information (optional)

Examples of measuring protocols for the proof of the functional capability of a technical unit to provide aFRR:





D2.3 – Specifications of Pilot Test 3



# 5 Use Case / Pilot Test 3\_3 – Provision of Tertiary Control / manual Frequency Restoration Reserve

#### 1 Description of the use case

#### 1.1 Name of use case

| Use case identification |                                                           |                                                                       |  |  |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| ID                      | Area / Domain(s)/ Zone(s)                                 | Name of use case                                                      |  |  |
| UC3_3                   | Customer Premises / Process, Field,<br>Station, Operation | Provision of Tertiary Control / man. Frequency<br>Restoration Reserve |  |  |

#### 1.2 Version management

| Version management |            |                      |                       |                    |  |  |
|--------------------|------------|----------------------|-----------------------|--------------------|--|--|
| Version<br>No.     | Date       | Name of<br>author(s) | Changes               | Approval<br>status |  |  |
| 0.1                | 18/04/2017 | K. Zach              | First draft           |                    |  |  |
| 0.2                | 16/05/2017 | T. Zöhrer            | Review of first draft |                    |  |  |
| 1.0                | 22/05/2017 | K. Zach              | Final version         |                    |  |  |

#### 1.3 Scope and objectives of use case

| Scope and objectives of use case |                                                                                                                                                |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Scope                            | Provision of tertiary control/frequency restoration reserve by changing the<br>power consumption of the electrolyser based on set point values |  |  |  |
| Objective(s)                     | Prequalification for / provision of tertiary control/ man. Frequency restoration reserve to the Austrian TSO APG                               |  |  |  |
| Related business<br>case(s)      | Flexibility provision                                                                                                                          |  |  |  |

#### 1.4 Narrative of Use Case

#### Narrative of use case

Short description

This Use Case describes the provision of tertiary control/ man. Frequency restoration reserve by an electrolyser which includes the adaption of the power consumption of the electrolyser to online control commands close to real time and the corresponding monitoring.

#### Complete description

This Use Case describes the provision of tertiary control / manual frequency restoration reserve (mFRR) by an electrolyser to the Austrian transmission system operator Austrian Power Grid (APG). The use case has three different scenarios: the reservation of tertiary control power, the control of the electrolyser and the real-time monitoring for APG.

For the reservation of mFRR, APG reports the acceptance of bids of the mFRR tender to the network operation centre (NOC)/VERBUND. If a bid was accepted, the NOC calculates the needed mFRR power that must be continuously reserved in the tender period by the electrolyser.

In case of a mFRR activation, APG either sends the respective set-point command directly to the NOC or informs the operator of the NOC via telephone in advance. The NOC then calculates the set-points for a selected set of the aggregated units in the pool (depending on the internal merit order). If the electrolyser is selected for an activation, the NOC forwards the calculated set-point to the Remote Terminal Unit (RTU). Then, the RTU forwards the set-point to the SCADA application of the electrolyser, which then calculates the needed change of power consumption of the electrolyser. Finally, the SCADA system sends the respective control commands to the electrolyser, which then adapts its power consumption. Consequently, the following steps are required in this scenario:

- 1. APG sends set-point command to the NOC
- 2. The NOC calculates the set-point of the electrolyser
- 3. The NOC sends the set-point to the RTU
- 4. The RTU sends the set-point to the SCADA application of the electrolyser



- The SCADA system calculates the set-point of the electrolyser 5.
- The SCADA system sends the suitable commands to the electrolyser 6.
- The electrolyser changes its power consumption accordingly

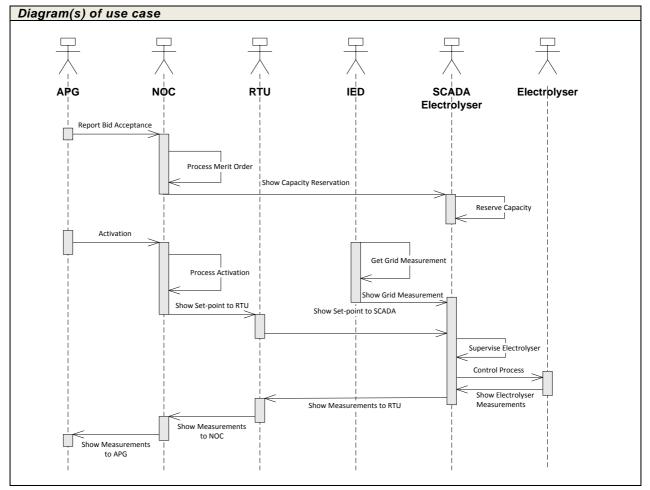
For the real-time monitoring for APG, an Intelligent Electronic Device (IED) periodically collects measurements indicating the current power consumption of the technical unit. The IED communicates the current power to the SCADA application of the electrolyser. The SCADA system periodically reports the current power consumption, etc. to the RTU. The RTU forwards this parameters to the NOC, which then sends the aggregated parameters of the pool for reporting to APG.

#### 1.5 Key performance indicators (KPI)

| Key | Key performance indicators |                                                                                                                                                                                                                                                                                                                                                      |                                               |  |  |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| ID  | Name                       | Description                                                                                                                                                                                                                                                                                                                                          | Reference to mentioned<br>use case objectives |  |  |
| 1   | Error margin of activation | The electrolyser adapts its power<br>consumption according to the online set-<br>point of the NOC. In case of over- or under-<br>activation of the electrolyser the following<br>error margin can be calculated:<br>$(P_{act} - P_{set}) / P_{act} [\%]$<br>$P_{act} actual power consumptionP_{set} target power consumption accordingto set-point$ |                                               |  |  |

#### 1.6 Use case conditions

| Use case cond                                            | itions                                                                                                                                                                                          |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assumptions                                              |                                                                                                                                                                                                 |
| Electrolyser is fl                                       | exible and fast enough for tertiary control provision (see table of requirements)                                                                                                               |
| Prerequisites                                            |                                                                                                                                                                                                 |
| Electrolyser can                                         | be operated in the whole frequency range from 47,5 Hz to 51,5 Hz, i.e. there is no                                                                                                              |
| frequency-deper                                          | ndent separation from the grid                                                                                                                                                                  |
| Data connection                                          | APG <-> NOC <-> RTU <-> SCADA is established                                                                                                                                                    |
| The electrolyser<br>provision of mFI<br>section 8 Custor | system is successfully prequalified for the provision of mFRR. The prequalification for the RR to APG involves a proof of the functional capability (measurement protocol – see m information). |


#### 1.7 Further information to the use case for classification / mapping

| Classification information                                          |
|---------------------------------------------------------------------|
| Relation to other use cases                                         |
| Use case of the WP2.3 of H2FUTURE                                   |
| Level of depth                                                      |
| Individual Use Case                                                 |
| Prioritisation                                                      |
| Implemented in demo                                                 |
| Generic, regional or national relation                              |
| Austria                                                             |
| Nature of the use case                                              |
| Technical                                                           |
| Further keywords for classification                                 |
| Tertiary control, frequency restoration reserve, ancillary services |

#### 1.8 General remarks



### 2 Diagrams of use case



### 3 Technical details

#### 3.1 Actors

| Actors                                 |             |                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |
|----------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Grouping                               |             | Group description                                                                                                                                                                                                                                                             |                                                                                                                          |  |  |
| Process/Field/Station actors           |             | Actors in Process, Field, Station levels                                                                                                                                                                                                                                      |                                                                                                                          |  |  |
| Actor name                             | Actor type  | Actor description                                                                                                                                                                                                                                                             | Further information specific to this use case                                                                            |  |  |
| Austrian Power Grid<br>(APG)           | Role        | APG operates the Austrian grid<br>balancing markets and monitors<br>the provision of FRR                                                                                                                                                                                      |                                                                                                                          |  |  |
| Electrolyser                           | Component   | An electrolyser is a technology<br>allowing to convert electricity into<br>hydrogen (and oxygen). It consists<br>of electrolyser stacks (several<br>electrolyser cells stacked to a<br>larger unit) and the transformer<br>rectifier system providing the<br>electrical power | In this use case the<br>electrolyser is the<br>technical unit which<br>provides mFRR                                     |  |  |
| Intelligent Electronic<br>Device (IED) | Component   | Any device incorporating one or<br>more processors with the<br>capability to receive or send<br>data/control from or to an external<br>source (e.g., electronic<br>multifunction meters, digital relays,<br>controllers)                                                      | In this Use Case, the<br>IED collects power<br>measurements from<br>the grid, sends<br>frequency changes to<br>the SCADA |  |  |
| Network Operation<br>Centre (NOC)      | Application | A NOC or virtual power plant is an application that optimises the                                                                                                                                                                                                             |                                                                                                                          |  |  |



V1.0

|                               |             | dispatch of technical units                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |
|-------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Remote Terminal<br>Unit (RTU) | Component   | A RTU is a microprocessor-<br>controlled electronic device that<br>interfaces objects in the physical<br>world to a distributed control<br>system or SCADA                                                                                                                                                                                                                            | In this Use Case, the<br>RTU collects<br>measurement data<br>from the SCADA and<br>sends them to the<br>NOC                  |
| SCADA Electrolyser            | Application | Supervisory control and data<br>acquisition – an industrial control<br>system to control and monitor a<br>process and to gather process<br>data. A SCADA consists of<br>programmable logic controllers<br>and human-machine interface<br>computers with SCADA software.<br>The SCADA system directly<br>interacts with devices such as<br>valves, pumps, sensors, actors<br>and so on | In this use case the<br>SCADA controls the<br>electrolyser process<br>and sets the DC<br>power for the<br>electrolyser stack |

### 3.2 References

| References |                    |           |        |                       |                              |      |
|------------|--------------------|-----------|--------|-----------------------|------------------------------|------|
| No.        | References<br>Type | Reference | Status | Impact on use<br>case | Originator /<br>organisation | Link |
|            |                    |           |        |                       |                              |      |

## 4 Step by step analysis of use case

#### 4.1 Overview of scenarios

| Sce | Scenario conditions  |                                                                                                                                                                                                         |                            |                                                          |                                                                                             |                                                                                               |  |  |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| No. | Scenario<br>name     | Scenario description                                                                                                                                                                                    | Primary<br>actor           | Triggering<br>event                                      | Pre-condition                                                                               | Post-<br>condition                                                                            |  |  |
| 1   | Capacity reservation | After bid acceptance by<br>APG, the NOC reserves<br>the capacity for mFRR                                                                                                                               | NOC                        | APG sends<br>accepted bids to<br>NOC/VERBUND<br>(weekly) | VERBUND<br>submitted bid(s)<br>for the mFRR<br>tender to APG                                |                                                                                               |  |  |
| 2   | Control              | NOC calculates set-point<br>based on APG input and<br>forwards it to the SCADA<br>which then controls the<br>electrolyser in order to<br>change its power<br>consumption according to<br>this set-point | SCADA<br>Electro-<br>lyser | NOC receives<br>set-point from<br>APG                    | All data<br>communications<br>are established.<br>The electrolyser<br>is up and<br>running. | Electrolyser<br>adepts its<br>power<br>consumption<br>according to<br>the control<br>commands |  |  |
| 3   | Monitoring           | SCADA reports the<br>current power<br>consumption, etc. to the<br>NOC                                                                                                                                   | SCADA<br>Electro-<br>lyser | SCADA<br>periodically<br>sends the data to<br>the RTU    | All data<br>communications<br>are established.<br>The RTU is up<br>and running.             | The NOC<br>forwards this<br>parameters<br>to APG                                              |  |  |

## 4.2 Steps – Scenarios

| Scer        | Scenario                              |                                 |                                                                                                            |                       |                                    |                                    |                                   |                           |
|-------------|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|---------------------------|
| Scen        | ario name:                            | No. 1 – Capa                    | city reservation                                                                                           |                       |                                    |                                    |                                   |                           |
| Step<br>No. | Event                                 | Name of<br>process/<br>activity | Description of<br>process/<br>activity                                                                     | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                          | Report bid<br>acceptance        | APG publishes<br>accepted bids of<br>mFRR tender                                                           | REPORT                | APG                                | NOC                                |                                   |                           |
| 2           | NOC receives<br>tender<br>information | Reserve<br>capacity             | Based on the<br>accepted bids,<br>NOC calculates<br>and reserves the<br>needed capacity<br>by electrolyser | INTERNAL<br>OPERATION | NOC                                | NOC                                | mFRR                              |                           |
| 3           | NOC has                               | Show capacity                   | NOC sends the                                                                                              | SHOW                  | NOC                                | SCADA                              | mFRR                              |                           |



V1.0

|             | determined<br>mFRR<br>capacity<br>reservation               | reservation                         | needed capacity<br>reservation by<br>electrolyser to<br>the SCADA                                  |                       |                                    | Electrolyser                       |                                   |                           |
|-------------|-------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|---------------------------|
| 4           | SCADA<br>receives<br>needed mFRR<br>capacity<br>reservation | Reserve<br>capacity                 | SCADA reserves<br>needed FCR<br>capacity of the<br>electrolyser                                    | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              | mFRR                              |                           |
| Scen        | nario name:                                                 | No. 2 – Contr                       |                                                                                                    |                       |                                    |                                    | -                                 |                           |
| Step<br>No. | Event                                                       | Name of<br>process/<br>activity     | Description of<br>process/<br>activity                                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Start mFRR<br>activation                                    | Activation                          | APG sends set-<br>point to NOC or<br>informs NOC<br>operator via<br>telephone about<br>activation  | SHOW                  | APG                                | NOC                                | SP_V                              |                           |
| 2           | NOC receives set-point                                      | Process<br>activation               | Based on the<br>received set-<br>point, NOC<br>calculates the<br>set-point for the<br>electrolyser | INTERNAL<br>OPERATION | NOC                                | NOC                                |                                   |                           |
| 3           | Periodically                                                | Show set-point<br>to RTU            | NOC sends set-<br>point to RTU                                                                     | SHOW                  | NOC                                | RTU                                | SP_V                              | QoS_2<br>Conf_2<br>Conf_3 |
| 4           | Periodically                                                | Show set-point to SCADA             | RTU sends set-<br>point to SCADA                                                                   | SHOW                  | RTU                                | SCADA<br>Electrolyser              | SP_V                              | QoS_2<br>Conf_1           |
| 3           | SCADA<br>receives set-<br>point                             | Supervise<br>electrolyser           | SCADA<br>supervises the<br>current<br>electrolyser<br>state based on<br>the received set-<br>point | INTERNAL<br>OPERATION | SCADA<br>Electrolyser              | SCADA<br>Electrolyser              |                                   |                           |
| 4           | Periodically                                                | Control<br>process                  | SCADA<br>processes &<br>sends out<br>control<br>commands                                           | CHANGE                | SCADA<br>Electrolyser              | Electrolyser                       | SP_E                              | QoS_3<br>QoS_4            |
| Scen        | nario name:                                                 | No. 3 – Monit                       |                                                                                                    |                       |                                    |                                    |                                   | 1                         |
| Step<br>No. | Event                                                       | Name of<br>process/<br>activity     | Description of<br>process/<br>activity                                                             | Service               | Information<br>producer<br>(actor) | Information<br>receiver<br>(actor) | Information<br>exchanged<br>(IDs) | Require<br>ment,<br>R-IDs |
| 1           | Periodically                                                | Get grid<br>measurement             | IED performs<br>measurement                                                                        | INTERNAL<br>OPERATION | IED                                | IED                                | PC_M                              | QoS_1<br>QoS_2            |
| 2           | Periodically                                                | Show grid<br>measurement            | IED sends<br>measurements to<br>SCADA                                                              | SHOW                  | IED                                | SCADA<br>Electrolyser              | PC_M                              | QoS_2                     |
| 3           | Periodically                                                | Show<br>electrolyser<br>measurement | Electrolyser<br>sends<br>measurements to<br>SCADA                                                  | SHOW                  | Electrolyser                       | SCADA<br>Electrolyser              | PC_M                              | QoS_2                     |
| 4           | Periodically                                                | Show<br>measurement<br>to RTU       | SCADA sends<br>electrolyser and<br>grid<br>measurements to<br>RTU                                  | SHOW                  | SCADA<br>Electrolyser              | RTU                                | PC_M<br>OP_V                      | QoS_2<br>Conf_1           |
| 5           | Periodically                                                | Show<br>measurement<br>to NOC       | RTU sends<br>measurements to<br>NOC                                                                | SHOW                  | RTU                                | NOC                                | PC_M<br>OP_V                      | QoS_2<br>Conf_2<br>Conf_3 |
| 6           | Periodically                                                | Show<br>measurement<br>to APG       | NOC sends<br>measurements to<br>APG                                                                | SHOW                  | NOC                                | RTU                                | PC_M<br>OP_V                      | QoS_2<br>Conf_4           |

### 5 Information exchanged

| Information exchanged        |                              |                                                                       |                    |  |  |
|------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------|--|--|
| Information<br>exchanged, ID |                              |                                                                       | Requirement, R-IDs |  |  |
| mFRR                         | mFRR Capacity<br>Reservation | Needed capacity reservation of<br>electrolyser for mFRR for tendering |                    |  |  |

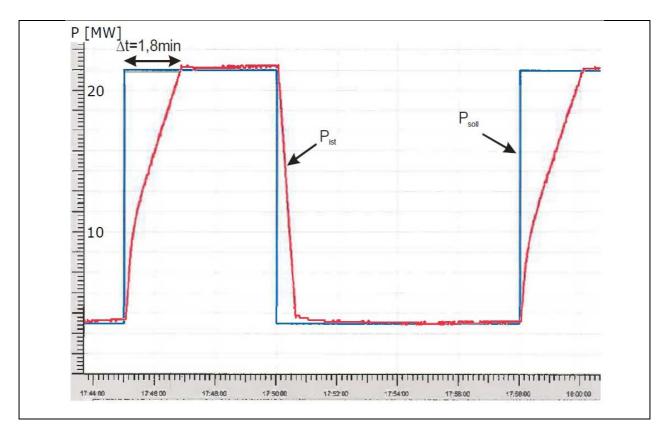


|      |                                     | period                                                            |                |
|------|-------------------------------------|-------------------------------------------------------------------|----------------|
| PC_M | Power<br>Consumption<br>Measurement | Measurement indicating the power consumption of the electrolyser. | QoS_1<br>QoS_2 |
| SP_V | Set-point Value                     | Set-point data by APG and the NOC                                 | QoS_2          |
| SP_E | Set-point<br>Electrolyser           | Set-point for controlling of the<br>electrolyser                  |                |
| OP_V | Operating Point<br>Value            | Operating point of the electrolyser                               | QoS_3          |

#### 6 Requirements (optional)

| Requirements (optional) |                                         |                                                                                                            |  |  |
|-------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Categories ID           | Category name<br>for requirements       | Category description                                                                                       |  |  |
| QoS                     | Quality of Service<br>Issues            | Requirements regarding the Quality of Service (e.g. availability of the system, acceptable downtime, etc.) |  |  |
| Requirement<br>R-ID     | Requirement name                        | Requirement description                                                                                    |  |  |
| QoS_1                   | Power<br>consumption<br>measurement     | The meter for measuring the power consumption must at least have an accuracy class 0,5.                    |  |  |
| QoS_2                   | Data interval                           | The measurement/data interval has to be 2 seconds (each full even second, GPS time).                       |  |  |
| QoS_3                   | Error margin                            | Max. error of activation: -3%                                                                              |  |  |
| QoS_4                   | Activation speed                        | 100% of dedicated/offered mFRR power must be activated within 10 minutes                                   |  |  |
| Categories ID           | Category name<br>for requirements       | Category description                                                                                       |  |  |
| Conf                    | Configuration<br>Issues                 | Requirements regarding communication configurations                                                        |  |  |
| Requirement<br>R-ID     | Requirement name                        | Requirement description                                                                                    |  |  |
| Conf_1                  | Communication<br>protocol SCADA-<br>RTU | Possible communication protocol between SCADA <-> RTU:<br>Modbus, Profibus                                 |  |  |
| Conf _2                 | Communication<br>protocol RTU-<br>NOC   | Possible communication protocol between RTU <-> NOC:<br>Modbus, IEC 60870-5-104                            |  |  |
| Conf_3                  | Encryption                              | Communication is encrypted via OpenVPN                                                                     |  |  |
| Conf_4                  | Communication<br>protocol APG-<br>NOC   | Communication protocol between APG <-> NOC:<br>IEC 60870-5-101                                             |  |  |

### 7 Common terms and definitions


| Common terms and definitions                                         |                                                                                                                                                                                                                                                                 |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Term                                                                 | Definition                                                                                                                                                                                                                                                      |  |  |
| Tertiary Control / manual<br>Frequency Restoration<br>Reserve (mFRR) | Tertiary control energy / manual Frequency Restoration Reserve (mFRR)<br>is activated when the deviation in the control area lasts for longer than 15<br>minutes. mFRR is used to relieve secondary control / automatic<br>Frequency Restoration Reserve (aFRR) |  |  |

#### 8 Custom information (optional)

#### Custom information (optional)

Examples of measuring protocols for the proof of the functional capability of a technical unit to provide mFRR:







# 6 References

# 6.1 **Project Documents of H2FUTURE**

- D2.1 Specifications of Pilot Test 1 / Use Case 1
- D2.2 Specifications of Pilot Test 2 / Use Case 2
- D2.3 Specifications of Pilot Test 3 / Use Case 3
- D2.4 Specifications of Pilot Test 4 / Use Case 4
- D2.5 Specifications of Pilot Test 5 / Use Case 5
- D2.6 Specifications of quasi-commercial Operation
- D2.7 Specifications of Final Tests
- D2.8 KPIs to monitor the Demonstrations and perform the Exploitation Tasks

## 6.2 External Documents

International Electrotechnical Commission (IEC) (2015): IEC 62559-2 "Use case methodology – Part 2: Definition of the templates for use cases, actor list and requirements list", 2015

OFFIS (2013): "Architecture templates and guidelines", deliverable D1.3 of the DISCERN project, available at <u>https://www.discern.eu/project\_output/deliverables.html</u>, 2013